North East University Bangladesh

Department of Computer Science and Engineering Semester Final Examination (Summer 2022) Program: B.Sc. (Eng.) in CSE

Course: CSE 231 (Algorithm Design and Analysis)

Total Marks: 40

Time: 2 hours

1. Answer any five from the following:

5x2=10

- In algorithmic complexity analysis, big-theta notation is stronger than big-Oh notation.

 True or false, explain.
 - 1.2 Find the big-oh (0) of this function: $f(n) = 5n \log n + 2n + 1024$
- 1.3 Is it possible to find all pairs of shortest paths using Dijkstra's algorithm? Justify.
- Discuss the similarity between Breadth First Search (BFS) and Dijkstra's algorithm.
- Compare and contrast between *Greedy* and *Dynamic* programming paradigms.
 - 1.6 Classify the following algorithms according to their programming approach: Minimum Spanning tree, Merge-sort, Quick-sort, 0/1 knapsack, Floyd-Warshall's shortest-path.
- 2. Answer any three from the following:

3x4=12

- 2.1 Discuss the elements of dynamic programming.
- 2.2 Write an algorithm for the fractional Knapsack problem. Find the time complexity of the algorithm.
- 2.3 Consider the following MERGE-SORT procedure, which sorts the array assuming subarrays A[st...mid] and A[mid+1...end] are already sorted:

 MERGE-SORT(A, st, end)
 - 1. If st<end, Then
 - 2. $mid \leftarrow \lfloor (st + end)/2 \rfloor$
 - 3. MERGE-SORT (A, st, mid)
 - 4. MERGE-SORT (A, mid+1, end)
 - MERGE (A, st, mid, end)

Describe what MERGE-SORT does to A if we remove the last line of the algorithm so that we never call MERGE.

2.4 Solve the following activity selection problem using greedy method:

i	1	2	3	4	5	6	7	8	9	10
Si	3	5	1	4	1	1	6	7	2	10
Fi	6	11	2	7	9	. 3	8	10	5	12

Find the complexity of the procedure (count the time required for sorting).

3.1 Solve the following recurrence relations (any two):

a)
$$T(n) = 8T\left(\frac{n}{2}\right) + n^2$$

b)
$$T(n) = 2T\left(\frac{n}{2}\right) + n\log n$$

c)
$$T(n) = 3T\left(\frac{n}{3}\right) + \sqrt{n}$$

3.2 Using Dijkstra's algorithm calculate the single-source shortest path for the following graph (use node 'a' as source).

Find the longest common subsequence of the following two strings X and Y using dynamic programming.

$$X = abbacdcb, Y = aabdcba$$

3.4 Find the minimum spanning tree of the following graph using Prim's algorithm.

